How a paradigm is born
Received: 09-OCT-2010
Accepted: 16-OCT-2010

About Professor Bayés de Luna’s postulate attempting
to break with a paradigm and in fact accomplishing
this. Paradigm is a model or pattern in any scientific
discipline or another epistemological context. The con-
cept was originally specific to grammar; in 1900 the
Merriam-Webster dictionary defined its use only in
such context, or in rhetoric to refer to a parable or a
fable. In linguistics, Ferdinand de Saussure has used
the word paradigm to refer to a class of elements with
similarities. The term refers in the field of psychology,
to the meanings of ideas, thoughts, beliefs generally
incorporated during our first stage of life that are ac-
cepted as truths or falsehoods without testing them
again under a new analysis. The term paradigm origi-
nates in the Greek word *parádeigma*, which in turn splits
into two terms, para (next) and déigma (model), in gen-
eral, etymologically means «model» or «example». In
turn, it has the same root words as «demonstrate».

Bayés de Luna with his singular intelligence did this;
he tested a paradigm in the case of infarctions of dif-
ferent walls comparing the electrocardiogram (ECG) with
nuclear magnetic resonance (NMR). Thus, Bayés states
and proves that the posterior side of the heart does not
exist (Figure 1), instead, this is the basal region of the
inferior side, visible in the bullseye of NMR (Figure 2).
The change of paradigm tends to be dramatic in sci-
ences, since these seem to be stable and mature, as phys-
ics at the end of the 19th century. Back then, physics
seemed to be a discipline finishing the last details of a
very elaborate system. The sentence by Lord Kelvin in
1900 became famous, when he said, «There is nothing
new to be discovered in physics now. All that remains is
more and more precise measurement». Five years after this
statement, Albert Einstein published his work on spe-
cial relativity that fixed a simple set of rules overcom-
ing Newton’s mechanics, which has been used to de-
scribe force and movement for over two hundred years.
In this example, the new paradigm reduces the old one
to a special case, since Newton’s mechanics is still an
excellent approach in the context of slow velocities in
comparison to light velocity. In *The Structure of Scien-
tific Revolutions*, Kuhn wrote that «successive transi-
tion from one paradigm to another via revolution is the
usual developmental pattern of mature science». The
idea of Kuhn was revolutionary on his time, and caused
more changes than all academicians speaking about
science. Thus, it was in itself a «paradigmatic change»
in scientific history and sociology. Philosophers and
scientific historians, including Kuhn himself, finally
accepted a modified version of this model, that achieves
a synthesis between its original version and the
gradualist model that preceded it. The original model
of Kuhn is currently considered very limited. The same
occurs with one-century-old electrocardiography that
still has aspects to be modified or clarified, such the
genesis of the U wave, the electrophysiological basis of
arrhythmias in Brugada syndrome, the proof of the
existence of the septal fascicle, the necessary revitali-
zation of vectorcardiography, the clarification of
ischemic changes and its relationship to the culprit
artery, that our Samuel Sclarowski should still unveil
in his new book, showing his truth to the world, and
so on.

Prof. Andrés Ricardo Pérez Riera MD
Chief of Electrovectorcardiology. Cardiology Department
ABC Faculty. ABC Foundation. Santo André
São Paulo. Brazil.
riera@uol.com.br
BIBLIOGRAFÍA


The greatest mistake you can make in life is to be continually fearing you will make one.

E. HUBBARD